Регулятор громкости и тембра построен на специализированной микросхеме с квазисенсорным управлением КР174ХА54. Стереофонический регулятор громкости и тембра предназначен для применения в стационарной и автомобильной аппаратуре. режимов работы осуществляется четырьмя светодиодами.

Все функции управления реализованы кнопками «+/-» и «SEL/NORM» через внутренний цифровой контроллер. Микросхема обеспечивает управление функциями:

  • «Громкость» («VOLUME»);
  • «Тонкомпенсация» («LOUDNESS»);
  • «Тембр ВЧ» («TREBLE»);
  • «Тембр НЧ» («BASS»);
  • «Баланс» («BALANCE»).

Кнопкой «SEL» осуществляется кольцевое переключение режимов: VOLUME - BASS - TREBLE - BALANCE.

При включении устанавливается средний уровень громкости (-30 дБ) и линейная АЧХ. Через несколько секунд после последнего нажатия любой из кнопок происходит автоматический возврат в режим регулировки громкости. Восстановление среднего (0 дБ) при регулировке тембра НЧ, ВЧ и баланса происходит нажатием кнопки «NORM». Этой же кнопкой происходит переключение режимов LOW/LOUDNESS (Отключение/включение тонкомпенсации).

Принципиальная схема темброблока приведена на рисунке ниже:

На микросхеме КР174ХА54 собран регулятор громкости и тембра, а на микросхеме DA2 выполнен устройства.

Светодиодами HL1-HL4 предусмотрена режимов работы:

Тонкомпенсация (HL1);

Регулировка тембра низкой частоты (HL2);

Регулировка тембра высокой частоты (HL3);

Регулировка баланса (HL4).

Основные характеристики:

Диапазон воспроизводимых частот, Гц....................................... 20...20000

Напряжение питания, В....................................................................... 9...16

Ток потребления, мА.................................................................................. 12

Диапазон регулировки громкости, дБ....................................................... 70

Шаг регулировки громкости, дБ............................................................... 1,4

Диапазон регулировки тембра (ВЧ, НЧ) и баланса, дБ.......................... ±12

Шаг регулировки тембра, баланса, дБ..................................................... 1,5

Коэффициент нелинейных искажений, % ............................................. 0,05

Коэффициент разделения каналов, дБ..................................................... 60

Максимальная амплитуда входного сигнала, В............................................ 2

Регулятор можно использовать с усилителем мощности, имеющим чувствительность 50...500 мВ.

Все элементы регулятора громкости и тембра размещены на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 2 мм (см. рисунок):

И.И.Масягин. Секреты радиолюбительского мастерства

М. - СОЛОН-Пресс, 2005 г

Возросший в последние годы интерес к высококачественному звуковоспроизведению вызвал появление в печати рядя статей, посвященных вопросам конструирования различных монофонических и стереофонических усилителей НЧ. Наряду со многими положительными качествами указанных устройств большинство из них имеет один общий недостаток - малую (около 12 дБ) глубину регулировки тембра высших и особенно низших звуковых частот. Узел регулировки тембра этих усилителей выполняют обычно по RC-мостовой схеме и включают между предварительным и оконечными блоками усилителя. При таком построении схемы от предварительного усилителя требуются большое усиление и большая амплитуда сигнала на выходе, что приводит в конечном счете к увеличению нелинейных искажений и ухудшению ряда других параметров усилителя.

Иногда регулировку тембра осуществляют в цепи местной параллельной или последовательной отрицательной обратной связи одно-каскадного усилителя. Однако в таком каскаде при максимальном подъеме усиления отрицательная обратная связь практически отсутствует, что также не способствует получению высоких качественных показателей усилителя.

В публикуемой ниже статье вниманию читателей предлагается описание десятиваттного усилителя, состоящего из предварительного корректирующего и оконечного усилительных блоков. В нем подъем высших и низших звуковых частот равен соответственно 20 и 24 дБ и осуществляется в цепи общей обратной связи предварительного усилителя. При этом глубина общей отрицательной обратной связи остается практически неизменной во всем диапазоне регулировки тембра и составляет 26 дБ.

Снижение усиления на крайних частотах рабочего диапазона обеспечивается RL- и RC-фильтрами, включенными между усилительными блоками. При этом имеет место незначительное уменьшение (на 6-8 дБ) глубины общей обратной связи на краях рабочего диапазона частот только при максимальном ослаблении усиления.

Для регулировки тембра на низших и высших звуковых частотах используются широкодоступные резисторы СП-1-А или СП-11-А с небольшой переделкой, которая может быть легко выполнена радиолюбителями. Благодаря такой переделке и использованию пружинящего свойства скользящего контакта появляется также возможность точной установки переменных резисторов в среднее положение, соответствующее плоской частотной характеристике коэффициента передачи усилителя.

Примененная в предлагаемом вниманию читателей усилителе глубокая регулировка тембра имеет значительные преимущества перед всеми другими известными видами регулировок. Она обеспечивает минимальные нелинейные искажения, малые шумы, высокую стабильность, постоянство выходного сопротивления и не требует применения каких-либо специальных мер по обеспечению устойчивости работы усилителя.

Частотные характеристики регуляторов тембра приведены на рис. 1. Сплошными линиями показаны характеристики, полученные в области низших частот при установке в среднее положение движка регулятора тембра высших звуковых частот, а в области высших частот при установке в среднее положение движка регулятора тембра низших звуковых частот. Пунктиром показаны частотные характеристики, полученные при установке движков регуляторов тембра в крайние положения (на подъем или снижение усиления). Из рис. 1 видно, что подъем усиления на частоте100 Гц составляет 16 дБ, а на частоте 20 Гц - 24 дБ.

Рис. 1. Частотные характеристики регуляторов тембра.

Подъем усиления на частоте 10 кГц равен 16 дБ, а на частоте 20 кГц - 20 дБ. Максимальная неискаженная выходная мощность усилителя 10 Вт при напряжении на входе 250 мВ. Диапазон рабочих частот усилителя 20-20 000 Гц при неравномерности частотной характеристики менее ±0,3 дБ. Нелинейные искажения в диапазоне частот 100- 8000 Гц не превышают 1,2%. Входное сопротивление 100-150 кОм в зависимости от положения движка регулятора усиления. Выходное сопротивление 0,1 Ом. Уровень шума около - 80 дБ.

Принципиальная схема усилителя приведена на рис. 2. Предварительный усилитель собран на высокочастотных транзисторах Т1-Т3, обеспечивающих постоянство значений входного сопротивления и глубины общей обратной связи во всем диапазоне рабочих частот.

Рис. 2. Принципиальная схема усилителя.

При использовании сплавных транзисторов, например П28, в сочетании с транзисторами МП41А постоянство указанных параметров не гарантируется из-за снижения коэффициента усиления по току на частотах выше 7-10 кГц.

Все три транзистора предварительного усилителя включены по схеме с непосредственной связью между каскадами и охвачены глубокими местными и общими обратными связями по постоянному току. Обратная связь, создаваемая резисторами R2 и R3, стабилизирует режимы работы транзисторов Т1-Т3 по току, а обратная связь, создаваемая резистором R9, включенным между коллектором транзистора Т3 и эмиттером транзистора Т2, стабилизирует потенциал коллектора транзистора Т3 но постоянному току. Указанные обратные связи позволяют использовать в предварительном усилителе транзисторы с разбросом коэффициента усиления по току от 20 до 200, обеспечивая высокую стабильность режимов их работы при изменении температуры окружающей среды от - 20 °С до +50 °С. Цепь обратной связи по постоянному току, создаваемая резистором R9, используется и в цепи обратной связи по переменному току. Дело в том, что через резистор R9 протекает часть выходного тока, под действием которого на резисторе R6, включенном в цепь эмиттера транзистора Т2, образуется переменное напряжение общей отрицательной обратной связи. Примененная здесь общая обратная связь обладает одним весьма полезным свойством: с помощью включенного в цепь резистора R6 можно в широких пределах регулировать коэффициент усиления усилителя по напряжению, оставляя практически неизменной глубину общей обратной связи. Именно это свойство и используется для подъема усиления на высших и низших частотах рабочего диапазона.

Постоянство глубины общей отрицательной обратной связи при изменении коэффициента усиления усилителя с обратной связью можно объяснить следующим образом.

Резистор R6 в цепи эмиттера транзистора Т2 является элементом местной отрицательной обратной связи. Одновременно он включен в цепь общей отрицательной обратной связи, так как через него по цепи R9-R6 протекает часть выходного тока. При снижении сопротивления в цепи эмиттера транзистора Т2, вследствие шунтирования резистора R6 цепью R7-1L1C5 или R8-] С6, уменьшается коэффициент передачи цепи общей обратной связи. В то же время пропорционально увеличивается коэффициент усиления каскада на транзисторе Т2 из-за снижения глубины местной последовательной обратной связи.

Известно, что при достаточно большой отрицательной обратной связи глубина ее равна произведению коэффициента передачи цепи общей обратной связи на коэффициент усиления усилителя без общей обратной связи. Так как при уменьшении сопротивления в цепи эмиттера транзистора Т2 эти коэффициенты изменяются в обратно пропорциональной зависимости, их произведение, а следовательно, и глубина общей отрицательной обратной связи будут оставаться неизменными, а коэффициент усиления усилителя с обратной связью будет увеличиваться за счет изменения глубины местной обратной связи. При увеличении сопротивления в цепи эмиттера Т2 указанные выше коэффициенты также будут изменяться в обратной зависимости, в результате чего глубина общей обратной связи опять-таки будет оставаться неизменной.

Экспериментальная проверка усилителя показала, что, регулируя сопротивление в цепи эмиттера транзистора Т2, можно изменять коэффициент усиления усилителя в 20 и более раз. При этом глубина общей обратной связи изменяется всего на 20-30%.

Подъем усиления на высших частотах достигается с помощью конденсатора С6, подключенного параллельно резистору R6 через переменный резистор R8-1. С увеличением частоты емкостное сопротивление конденсатора С6 уменьшается и при полностью выведенном резисторе R8-1 все в большей степени шунтирует резистор R6. При этом достигается подъем усиления 6 дБ на октаву в диапазоне частот от 1,3 до 16 кГц. При перемещении движка переменного резистора R8 с участка R8-2 снижается усиление на высших частотах. При R8-2=0 конденсатор С6 вместе с резистором R14 образуют RС-фильтр нижних частот, включенный на выходе предварительного усилителя. При увеличении сопротивления резистора R8-2-1 на участок R8-2 усиление на высших частотах увеличивается.

Подъем и снижение усиления в области низших частот достигается при помощи последовательного резонансного контура L1C5 добротностью Q ≈ 1, настроенного на частоту 20 - 30 Гц. Подъем усиления обеспечивается в том случае, если движок переменного резистора находится на участке R7-1 резистора R7, а снижение - на участке R7-2 того же резистора. При R7-2-0 резистор R14 и катушка L1 образуют фильтр верхних частот.

Необходимо отметить, что при таком способе регулировки усиления на высших и низших звуковых частотах выходное сопротивление предварительного усилителя практически не изменяется во всем рабочем диапазоне и не зависит от величины подъема усиления на краях диапазона, что важно для согласования предварительного усилителя НЧ с оконечным, Однако, поскольку величина входного сопротивления транзистора Т2 уменьшается на низших и высших частотах пропорционально величине подъема усиления, для сохранения его постоянства во всем рабочем диапазоне частот базу транзистора пришлось подключить к выходу эмиттерного повторителя, собранного на транзисторе Т1. Транзисторы Т1 и Т2 включены по схеме составного транзистора. Входное сопротивление эмиттерного повторителя около 300-500 кОм.

Оконечный усилитель содержит четыре каскада усиления. Первый и второй каскады (транзисторы Т4 и Т5 соответственно) работают в режиме усиления напряжения, а третий и четвертый каскады (транзисторы Т6-Т9) - в режиме усиления тока.

Схема оконечного блока усилителя НЧ имеет некоторые отличия от стандартной схемы бестрансформаторного усилителя НЧ. Из-за введения более глубокой общей отрицательной обратной связи по переменному току в усилитель пришлось ввести конденсаторы СП, С14 и С15, с помощью которых обеспечивается его устойчивая работа за пределами высокочастотной части рабочего диапазона.

Для получения максимально возможного к.п.д. усилителя при одном напряжении источника питания в цепи эмиттера транзистора Т5 отсутствует сопротивление местной последовательной обратной связи.

Для стабилизации тока покоя транзисторов Т6 - Т8 в цепь коллектора транзистора Т5 включено два последовательно соединенных диода: кремниевый и германиевый. На схеме они показаны одним диодом Д1. Необходимо, чтобы эти диоды имели тепловой контакт с радиаторами транзистора Т8 или Т9. Функции кремниевого диода выполняет переход коллектор-база транзистора КТ315А (можно использовать и другие кремниевые транзисторы, например МП116, МП113). В качестве германиевого применен диод ДЗПА, его также можно заменить любым сплавным транзистором. При необходимости более точной подгонки тока покоя транзисторов Т6-Т9 германиевый диод можно зашунтировать резистором сопротивлением в несколько сотеном. В оконечном каскаде усилителя используются сравнительно маломощные кремниевые транзисторы КТ801Б, которые значительно облегчают режим работы предоконечных транзисторов Т6 и Т7, поскольку обладают достаточно большим коэффициентом усиления по току В ст = 10-30 при токе покоя 20-50 мА. Транзисторы КТ805 или аналогичные им применять нецелесообразно, так как при токе до 100 мА они имеют В ст =2-3, что требует значительного тока коллектора 20-40 мА от предоконечных транзисторов, а это оправдано только в усилителях мощностью выше 25- 30 Вт.

При напряжении питания 27 В сопротивление звуковой катушки громкоговорителя должно быть равно 6 Ом. При уменьшении или увеличении этого сопротивления для получения выходной мощности 10 Вт напряжение источника питания должно быть соответственно изменено. Однако увеличивать его более 30- 33 В нецелесообразно, поскольку примененные в усилителе элементы на это не рассчитаны. Усилитель хорошо работает при пониженном напряжении 16-20 В, отдавая в нагрузку 4-7 Вт.

Блок питания состоит из понижающего трансформатора Tpl, выпрямителя на диодах Д4-Д7 и стабилизатора напряжения, собранного на транзисторах Т10-Т13 но компенсационной схеме с защитой от короткого замыкания в нагрузке.

Рис. 3. Конструкция переделанного резистора: 1 - оставшаяся часть проводящего слоя; 2 - участки с удаленным проводящим слоем; 3 - вырез в подкове из гетинакса, на которую нанесен проводящий слой; 4 и 6 - лепестки, соединенные с концами проводящего слоя; 5 - лепесток, соединенный со скользящим контактом

Детали. В усилителе используются резисторы МЛТ-0,125 или УЛМ-0,125. Конденсаторы - МБМ, БМ-2 и К50-6. Катушка L1 намотана на односекционном каркасе, размещена в сердечнике ОБ-20, из феррита 2000НМ зазор 0,15-0,2. Обмотка ее содержит 1500 витков провода ПЭВ-1 0,1. Сопротивление катушки постоянному току 100-120 Ом, индуктивность 0,8- 1,3 Г.

Переменные резисторы R7-1, R7-2 и R8-1, R8-2 изготавливают в соответствии с эскизом, показанным на рис. 3, из переменных резисторов СП-1-A или СП-П-А сопротивлением от 2,4 до 3,3 кОм. При переделке с резисторов снимают защитный экран и ось со скользящим контактом. Лепестки 4 и 6 (рис. 3) подключают к омметру. Острым ножом удаляют края проводящего слоя так, чтобы в средней части он стал уже и равномерно расширялся к концам (участок проводящего слоя, по которому двигается скользящий контакт, удалять нельзя). В этом случае сопротивление переменного резистора должно немного увеличиться. Затем очень мелкой наждачной бумагой начинают стирать оставшуюся часть проводящего слоя от середины в обе стороны на угол до 100°-110° (всего на 200°-220°) так, чтобы проводящий слой в средней части стирался больше, чем у краев. Следует стремиться к тому, чтобы в процессе стирания толщина оставшегося слоя равномерно уменьшалась от концов к середине и не было резких скачков изменения сопротивления при перемещении скользящего контакта. В этом случае подъем усиления в децибелах будет приблизительно пропорционален углу поворота движка переменного резистора.

Стирая проводящий слой, следует постоянно следить за стрелкой омметра, которая будет отклоняться в сторону больших сопротивлений. После того как омметр покажет сопротивление 8-9 кОм, дальнейшее стирание надо прекратить и в средней части подковы из гетинакса, на которую нанесен проводящий слой, вырезать поперечную канавку 3 (см. рис. 3) шириной 3-4 мм и глубиной до 0,5- 1 мм, разрезав на две электрически изолированные части проводящий слой. Затем ось со скользящим контактом устанавливают на место и, вращая ее, убеждаются, что скользящий контакт фиксируется в среднем положении при попадании его пружины в вырезанную канавку 3. Если эта фиксация недостаточно четкая, канавку следует углубить. Затем устанавливают скользящий контакт в среднее положение и, поочередно подключая омметр к контактам 5, 6 и 5, 4 (рис. 3), проверяют сопротивление между ними. Это сопротивление должно быть равно бесконечности.

Далее подключают омметр к контактам 5, 6 переменного резистора, а скользящий контакт из среднего положения смещают на начало проводящего слоя, соединенного с контактом 6. При этом стрелка омметра должна показывать сопротивление около 3 кОм.

Этот участок сопротивления соответствует резистору R7-1. Затем омметр соединяют с контактами 5, 4, скользящий контакт переводят из среднего положения на начало проводящего слоя, соединенного с контактом 4, измеряют сопротивление этого участка и, стирая проводящий слой мелкой наждачной бумагой в соответствии с приведенными выше рекомендациями, доводят сопротивление этого участка до 10 кОм. Участок сопротивления, соединенный с контактом 4, соответствует резистору R7-2. Резисторы R8-1 и R8-2 изготавливаются аналогичным образом.

Силовой трансформатор Тр-1 можно выполнить на любом сердечнике с сечением внутреннего керна не менее 6 см2, например, Ш20Х30. Обмотка I содержит 1270 витков провода ПЭВ 0,27, обмотка II - 930 витков провода ПЭВ 0,2 н обмотка III - 270 витков провода ПЭВ 0,8-0,9.

Налаживание. Налаживание усилителя начинают с проверки выпрямителя. Напряжение 27 В на выходе стабилизатора устанавливают переменным резистором R27. Затем амперметр с пределом измерения 1,5- 2 А включают на выход стабилизатора и убеждаются в отсутствии тока при коротком замыкании выхода стабилизатора амперметром.

Перед включением оконечного блока усилителя к нему подключают эквивалент нагрузки и замыкают накоротко диоды Д1. Резистором R20 устанавливают напряжение 12,5-13 В на коллекторе транзистора Т5. Затем подбирают диоды Д1 так, чтобы потребляемый усилителем ток (при отсутствии сигнала на входе) возрос с 4-5 мА до 40-50 мА.

Режим работы транзистора Т4 устанавливают резистором R15 (см. таблицу режимов работы транзисторов). Далее проверяют отсутствие самовозбуждения усилителя за пределами высокочастотного участка рабочего диапазона и, если оно имеет место, на 20-50% увеличивают емкости конденсаторов СИ, С14 и С15. При выходной мощности 10 Вт ток, потребляемый усилителем от источника питания, должен составлять 0,6 А, а напряжение на входе оконечного блока -1,5- 1,8 В.

Входной блок усилителя НЧ работает сразу после включения. Если индуктивность велика, то емкость конденсатора С5 следует уменьшить до 50 мкФ. Последовательно с резистором R8-1 следует включить резистор сопротивлением 100 Ом.

Описанный усилитель хорошо работает в стереофоническом варианте.

Регуляторы тембров можно спарить механическим путем либо применить ступенчатые регуляторы с использованием переключателей.

В этом случае при малой глубине подъема могут быть получены частотные характеристики с максимумом на частотах 20-30 Гц и 15- 20 кГц. При этом корректирующие цепи должны подключаться к части резистора R6.

ПРЕДВАРИТЕЛЬНЫЙ УСИЛИТЕЛЬ НА LM833
С РЕГУЛЯТОРАМИ ВЧ И НЧ, БАЛАНСА И ГРОМКОСТИ.

Ниже приведена принципиальная схема предварительного усилителя, реализованная на операционном усилителе LM833.

В цепи обратной связи входного каскада установлены два тримера (P1 и P101 номиналом 100 кОм), с их помощью можно установить необходимый коэффициент усиления и чтобы уровни обоих каналов были одинаковы.

Питание осуществляется от двуполярного источника напряжением ±12 Вольт. БП можно собрать на интегральных стабилизаторах 78L12 и 79L12.

Исходник печатной платы предварительного усилителя:

Расположение элементов на плате предварительного усилителя на LM833:

По этим рисункам была нарисована печатная плата в программе Sprint Layout. Вид LAY формата показан ниже:

Фото-вид печатной платы LAY формата:

Плата выполнена под односторонний стеклотекстолит, размер 60 х 140 мм.

Перечень элементов для сборки предварительного усилителя на LM833:

Конденсаторы:

470n – 4 шт. (C1,C9,101,109)
10p – 2 шт. (C2,102)
2M2 – 6 шт. (C3,7,8,103,107,108)
15n – 2 шт. (C4,104)
150n – 4 шт. (C5,6,105,106)
68n – 2 шт. (C10,110)
100mF/25V – 2 шт. (C11,12)
100n – 2 шт. (C13-16)

Микросхемы:

LM833 – 2 шт. (IC1,2)

Резисторы:

1k – 2 шт. (R1,101)
100k – 2 шт. (R2,102)
39k – 4 шт. (R3,4,103,104)
4k7 – 4 шт. (R5,11,105,111)
1k2 – 4 шт. (R6,7,106,107)
2k2 – 8 шт. (R8-10,12,13,108-110)
47k – 2 шт. (R14,114)
18k – 2 шт. (R15,115)
15k – 2 шт. (R16,116)
22k – 2 шт. (R17,117)
TRIM 100k – 2 шт. (P1,101)
BALANCE - 25k/N
BASS - 25k/N
TREBLE - 25k/N
VOLUME - 50k/G
Разъемы IN,OUT,UCC - ARK500/3 – 3 шт.

Внешний вид собранной платы показан на следующем снимке:

Скачать принципиальную схему предварительного усилителя на микросхемах LM833 с регуляторами громкости, баланса, высоких и низких частот можно по прямой ссылке с нашего сайта. Размер файла – 0,48 Mb.

Не мечтай, действуй!



Эксперименты с различными предварительными усилителями, регуляторами громкости и тембра показали, что наилучшее качество звучания обеспечивается при минимальном количестве усилительных каскадов, с пассивными регуляторами. При этом регулировки на входе усилителя мощности нежелательны, так как приводят к увеличению уровня нелинейных искажений комплекса. Данный эффект сравнительно недавно обнаружил известный разработчик аудиоаппаратуры Дуглас Селф .

Таким образом, вырисовывается следующая структура этой части звукоусилительного тракта:
- пассивный мостовой регулятор низших и высших частот,
- пассивный регулятор громкости,
- предварительный усилитель с линейной амплитудно-частотной характеристикой (АЧХ) и минимальными искажениями в рабочем диапазоне частот.
Очевидный недостаток регулировок на входе предварительного усилителя – ухудшение соотношения сигнал/шум в значительной степени нивелируется высоким уровнем сигнала современных устройств звуковоспроизведения.

Предлагаемый предварительный усилитель может применяться в высококачественных стереофонических усилителях звуковой частоты. Регулятор тембра позволяет корректировать амплитудно-частотную характеристику (АЧХ) одновременно по двум каналам в двух частотных областях: нижней и верхней. В результате учитываются особенности помещения и акустических систем, а также личные предпочтения слушателя.

И снова немного истории

Первым претендентом на роль предварительного усилителя с регулятором тембра стала схема Д. Стародуба (рис. 1) . Но конструкция так и не «прижилась» в усилителе мощности: требовалась тщательная экранировка и источник питания с чрезвычайно малым уровнем пульсаций (порядка 50 мкВ). Однако главной причиной стало отсутствие ползунковых переменных резисторов.


Рис. 1. Схема высококачественного блока регуляторов тембра

Путем проб и ошибок я пришел к простой схеме предварительного усилителя (рис. 2), с которой, однако, система звуковоспроизведения намного превзошла в звучании серийно выпускавшуюся аппаратуру, по крайней мере, имевшуюся у моих друзей и знакомых.


Рис. 2. Принципиальная схема одного канала предварительного усилителя для УМЗЧ С. Батя и В. Середы

За основу взята схема предварительного усилителя стереофонического электрофона Ю. Красова и В. Черкунова, демонстрировавшегося на 26 – й Всесоюзной выставке радиолюбителей – конструкторов. Это левая часть схемы, включая регуляторы тембра.

Появление каскада на транзисторах разной проводимости в предварительном усилителе (VT3, VT4) связано с обсуждением усилителей с преподавателем лаборатории телевизионной техники на кафедре Радиосистем А. С. Мирзоянцем, с которым я работал, будучи студентом. В ходе работ понадобились линейные каскады для усиления телевизионного сигнала, и Александр Сергеевич сообщил, что по его опыту наилучшими характеристиками обладают структуры «шиворот – навыворот», как он выразился, то есть усилители на транзисторах противоположной структуры с непосредственной связью. В процессе экспериментов с УМЗЧ я выяснил, что это касается не только телевизионной техники, но и звукоусилительной. Впоследствии я часто применял подобные схемы в своих конструкциях, в том числе пары полевой транзистор – биполярный транзистор.

Попытка применить транзисторы разной структуры в первом каскаде (составном эмиттерном повторителе VT1, VT2) не принесла успехов, т. к. при всех замечательных характеристиках (низком уровне шума, малых искажениях) схема имела существенный недостаток – меньшую перегрузочную способность по сравнению с эмиттерным повторителем.
Характеристики предварительного усилителя:
Входное сопротивление, кОм=300
Чувствительность, мВ=250
Глубина регулировок тембра, дБ:
на частоте 40 Гц=±15
на частоте 15 кГц=±15
Глубина регулировок стереобаланса, дБ=±6

Поскольку в ходе конструирования усилителей возникали новые идеи, старые конструкции я дарил кому-нибудь, или продавал по твердому курсу ватт выходной мощности / рубль. В одну из поездок в Ленинград я захватил с собой этот усилитель, чтобы продать его знакомому друга. Володька сказал, что у этого парня куча всякой западной техники, и увез аппарат к нему на прослушивание. Вечером он сообщил мне результаты: молодой человек включил усилитель, послушал пару вещей и был так удовлетворен звучанием, что без слов отдал положенные деньги.

Честно сказать, когда я узнал, что сравнение будет проходить с импортной техникой, особенно не надеялся, что усилитель произведет впечатление. К тому же, он не был до конца доделан – отсутствовали верхняя и боковые крышки.

Рассмотрим принципиальную схему одного канала предварительного усилителя (рис. 2). На входе установлены высокоомные регуляторы громкости (R2.1) и баланса (R1.1). Со среднего вывода резистора R2.1 через переходной конденсатор С2 звуковой сигнал поступает на составной эмиттерный повторитель VT1, VT2, необходимый для нормальной работы пассивного регулятора тембра, выполненного по мостовой схеме. Для того чтобы устранить вносимое темброблоком затухание и усилить сигнал до необходимого уровня, установлен двухкаскадный усилитель на транзисторах VT3, VT4.

Питание предварительного усилителя нестабилизированное, от положительного плеча усилителя мощности. На каскады VT3, VT4 питающее напряжение подается через фильтр R17, C10, C13, а на входной эмиттерный повторитель - R8, C4. Важную роль играет диод VD1: без него не удалось полностью устранить фон переменного тока частотой 100 Гц на выходе усилителя мощности.

Конструктивно предварительный усилитель выполнен в «линейку», все детали установлены на печатной плате, закрытой сверху П-образным экраном из стали толщиной 0,8 мм.

--
Спасибо за внимание!


Расчет выполнен по следующим соотношениям: R1 = R3; R2 = 0,1R1; R4 = 0,01R1; R5 = 0,06R1; C1[нФ] = 105/R3[Ом]; C2 = 15C1; C3 = 22C1; C4 = 220C1.
При R1=R3=100 кОм темброблок будет вносить затухание около 20 дБ на частоте 1 кГц. Можно взять переменные резисторы R1 и R3 другого номинала, пусть, для определенности, в наличии оказались резисторы сопротивлением 68 кОм. Несложно пересчитать номиналы постоянных резисторов и конденсаторов мостового регулятора тембра без обращения к программе или табл. 1: уменьшаем величины сопротивлений резисторов в 68/100=0,68 раза и увеличиваем емкости конденсаторов в 1/0,68=1,47 раза. Получаем R1=6,8 кОм; R3=680 Ом; R4=3,9 кОм; С2=0,033 мкФ; С3=0,33 мкФ; С4=1500 пФ; С5=0,022 мкФ.

Для плавной регулировки тембра необходимы переменные резисторы с обратной логарифмической зависимостью (кривая В).
Наглядно просмотреть работу спроектированного регулятора тембра позволяет программа Tone Stack Calculator 1.3 (рис. 9).


Рис. 9. Моделирование регуляторов тембра для схемы, изображенной на рис. 8


Программа Tone Stack Calculator предназначена для анализа семи типовых схем пассивных регуляторов тембра и позволяет сразу показать АЧХ при изменении положения виртуальных регуляторов.

Рис. 11. Принципиальная схема темброблока и предварительного усилителя для «студенческого» УМЗЧ

Экспериментальная проверка нескольких экземпляров операционных усилителей показала, что и без конденсатора в заземленной ветви делителя отрицательной обратной связи постоянное напряжение на выходе составляет единицы милливольт. Тем не менее, из соображений универсальности применения, на входе темброблока и выходе предварительного усилителя включены разделительные конденсаторы (С1, С6).
В зависимости от требуемой чувствительности усилителя величину сопротивления резистора R10 выбирают из табл. 2. Следует стремиться не к точному значению сопротивлений резисторов, а их попарному равенству в каналах усилителя.

Таблица 2


🕗 25/02/12 ⚖️ 11,53 Kb ⇣ 149 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Главным недостатком пассивного регулятора тембра является низкий коэффициент передачи. Другой недостаток заключается в том, что для получения линейной зависимости уровня громкости от угла поворота необходимо использовать переменные резисторы с логарифмической характеристикой регулирования (кривая «В»).
Достоинством пассивных регуляторов тембра является меньшие искажения, чем активных (например, регулятора тембра Баксандала, рис. 12).


Рис. 12. Активный регулятор тембра П. Баксандала


Как видно из схемы, показанной на рис. 12, активный регулятор тембра содержит пассивные элементы (резисторы R1 - R7, конденсаторы C1 – C4), включенные в стопроцентную параллельную отрицательную обратную связь по напряжению операционного усилителя DA1. Коэффициент передачи данного регулятора в среднем положении движков регуляторов тембра R2 и R6 равен единице, а для регулировки используются переменные резисторы с линейной характеристикой регулирования (кривая «А»). Иными словами, активный регулятор тембра свободен от недостатков пассивного регулятора.
Однако по качеству звучания этот регулятор явно хуже пассивного, что замечают даже неискушенные слушатели.

Рис. 13. Размещение деталей на печатной плате

Элементы, относящиеся к правому каналу предварительного усилителя, обозначены со штрихом. Такая же маркировка выполнена и в файле печатной платы (с расширением *.lay) – надпись появляется при подведении курсора к соответствующему элементу.
Вначале на печатной плате устанавливают малогабаритные детали: проволочные перемычки, резисторы, конденсаторы, ферритовые «бусинки» и панельку для микросхемы. В последнюю очередь монтируют клеммники и переменные резисторы.
После проверки монтажа включают питание и контролируют «ноль» на выходах операционного усилителя. Смещение составляет 2 – 4 мВ.
При желании можно погонять устройство от синусоидального генератора и снять характеристики (рис. 14).


Рис. 14. Установка для снятия характеристик предварительного усилителя

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Упомянутые источники

1. Дайджест // Радиохобби, 2003, №3, с.10, 11.
2. Стародуб Д. Блок регуляторов тембра высококачественного усилителя НЧ // Радио, 1974, №5, с. 45, 46.
3. Шкритек П. Справочное руководство по звуковой схемотехнике. – М.: Мир, 1991, с. 150 – 153.
4. Шихатов А. Пассивные регуляторы тембра // Радио, 1999, №1, с. 14, 15.
5. Ривкин Л. Расчет регуляторов тембра // Радио, 1969, №1, с. 40, 41.
6. Солнцев Ю. Высококачественный предварительный усилитель // Радио, 1985, №4, с.32 – 35.
7. //www.moskatov.narod.ru/ (Программа Е. Москатова «Timbreblock 4.0.0.0»).

Владимир Мосягин (MVV)

Россия, Великий Новгород

Радиолюбительством увлекся с пятого класса средней школы.
Специальность по диплому - радиоинженер, к.т.н.

Автор книг «Юному радиолюбителю для прочтения с паяльником», «Секреты радиолюбительского мастерства», соавтор серии книг «Для прочтения с паяльником» в издательстве «СОЛОН-Пресс», имею публикации в журналах «Радио», «Приборы и техника эксперимента» и др.

Читательское голосование

Статью одобрили 70 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Представленное ниже устройство обладает хорошим качеством звучания и низким уровнем шумов, а также имеет функцию обхода (прямая АЧХ), в тоже время простота схемы не отпугнет начинающих радиолюбителей. В основу пассивной части схемы входит разработка, описанная E.J.James"ом еще в 1948 году, а все устройство вместе смахивает на работу Baxandall"a образца 1952 года:) Смахивает использованием усилительного каскада, в данном случае ОУ, которым можно поднять амплитуду, "съеденную" (у этого регулятора амплитуда падает в пять раз или -13дБ!) темброблоком. Анализируя широко известные любому радиолюбителю источники (в коих наблюдается некоторая историческая неточность), было принято решение поэкспериментировать с этой вещичкой:

К сожалению, реальные графики АЧХ так и не успел снять, однако приведем результат моделирования в программе Tone Stack Calculator . Данная схема примечательна использованием R5-R6, которые обеспечивают более узкий подъем частот, не затрагивая середину. Этих резисторов нет в разработке E.J.James"a, поэтому симуляция произойдет без них:). Однако на общее впечатление от графика это не скажется, просто полоса подъема высоких частот будет более широкой.

Но мне хотелось бы большего: ещё больший подъем на НЧ и в особенности ВЧ, так сказать с запасом, хотя в вашем случае все может быть совершенно иначе. Вернее не в вашем случае, а в случае вашей акустики:). К примеру из опыта эксплуатации продукции бердского радиозавода ВЕГА 50АС-106 регулировка низких частот темброблока в RRR УП-001 совсем не подходила, поскольку поднимала лишь область верхнего баса (200-250 Гц, басом это трудно назвать, скорее гул). Однако на акустических системах производства рижского радиозавода Radiotehnika RRR S50b, можно было добиться приемлимого качества звучания. Хотя все это считается баловством, поскольку корректирует лишь впечатление от прослушивания, корректировку АЧХ колонок и, если усилитель ущербен, проводят другими схемотехническими изысканиями, к примеру параметрическими эквалайзерами с регулировками не только по усилению, но и с возможностью перемещения подымаемой частоты и добротности. Но мы же здесь не собрались исправлять огрехи дорогой акустики?

Итого +6 дБ на основной низкой частоте, и +5 дБ на высокой. Спад -3 дБ в области средних частот решено поднять усилением на ОУ. Признаюсь, стало немного многовато. В схеме поворотом регуляторов трудно добиться ровной АЧХ (вернее совсем не добиться), поэтому решено добавить устройство, отключающее темброблок. Это может оказаться полезным при эксплутации с вашим усилителем более "продвинутого" эквалайзера. Простым замыканием входа и выхода пассивной части или же всего темброблока (в первом случае замыкается конденсатор С3 и как следствие заваливаются верха, во втором - регулировка ВЧ и НЧ сохраняется, правда в небольших пределах) здесь не обойтись. Поэтому можно осуществить элементарную коммутацию на реле с перекидными контактами (типа РЭС-9, РГК-14 и т.д.).

Стоит отдельно затронуть изъезженную тему конденсаторов в блоке тембров. По своему субъективному опыту эксплуатации известного предусилителя Шмелева , в конструкции которого применял незадумываясь керамику импортного производства, широкораспространенную в магазинах, выходной сигнал был насыщен гармониками, что ощущалось на слух. Быть может в слепом тесте этого темброблока с другими конденсаторами я бы этого и не заметил, но тем не менее у меня это глубоко отложилось в памяти. В данной конструкции решил использовать исключительно конденсаторы на бумажной основе. Конечно, здесь я не буду описывать опыт использования импортных конденсаторов за сотни долларов, но как говорится, чем богат:). Из накопленных запасов были вытащены конденсаторы серий БМТ-2, БМ-2 и МБМ.

Итак, при использовании данных конденсаторов, первое что необходимо сделать, это измерить их емкость и осмотреть на внешние повреждения (в особенности для БМТ-2). Среди десятка образцов конденсаторов серии МБМ, 90% имели превышение номинальной емкости на 40-50%, что в двое больше их допуска. Измерение емкости позволяет подобрать конденсаторы в пары для 2-х каналов для обеспечения симметричной регулировки. Первое включение и вердикт - однозначно предпочтительнее использования китайской керамики. К своему стыду, мне не удалось отыскать бумажный конденсатор в цепи ВЧ, поэтому применил конденсатор серии КТК, широко использовался в ламповых телевизовах и прочей аппаратуре. Кроме всего прочего данный конденсатор обладает хорошей термостабильностью. Обкладки из серебра на звуке никак не сказались:) (хотя после пополнения багажа знаний о данном конденсаторе, звук постепенно стал становиться краше и... :)). Графики, которые получилось снять:

Регуляторы повернуты на максимум:


Регуляторы повернуты на минимум:


Схема получившегося устройства:

Характеристики данного темброблока:

  • Коэффициент гармоник, %: не более 0,02.
  • Диапазон регулировки, не менее: НЧ +-16 дБ, ВЧ +-17 дБ.
  • Входной сигнал: ~1V.

Показатели по КГ, сигнал/шум зависят от примененного ОУ. Выбор пал на TL072, (это сдвоенный ОУ фирмы ST) в силу его дешевизны и распространенности. Отлично сюда впишутся и такие операционники, как NE5532, NJM4558, LM358. Поэкспериментировать можно и с одиночными ОУ (с дальшейшей переделкой ПП) TL071, NE5534, КР544УД1,2, К157УД2 (с цепями коррекции) и так далее. С бумажными конденсаторами и ОУ в золотом корпусе, чем не раритет? Для оперативной замены микросхемы (если отдали предпочтение другому ОУ), рекомендуется предварительно установить на соответствующее место панельку DIP-8.

Для питания активной части устройства используется параметрический стабилизатор напряжения на два плеча + и - без использования каких-либо усилительных элементов, поскольку в данной схеме общий ток потребления меньше номинального тока стабилитронов. Для сглаживания остатков пульсаций, вызванных пульсациями блока питания УМЗЧ, в схеме присутствуют два электролита. Их емкость невелика для обеспечения низкой инерционности. Такой небольшой набор дает низкий уровень фона при эксплуатации устройства.

Разумеется, для обеспечения минимального уровня фона этого бывает недостаточно. Снизить фон может помочь заземление корпусов переменных резисторов. У некоторых групп регуляторов для этого есть отдельный вывод (например СП3-33-23). В моем распоряжении оказались широко распространенные резисторы В-группы (для регулировки баланса они не подходят), корпус которых после обработки наждачкой я и заземлил. Земли свел к одной выбранной точке (корпус регулятора низких частот), откуда направил их земле блока питания УМЗЧ. Фотография устройства и печатная плата:

Размер печатной платы 140х60 мм, здесь можно скачать файлик в формате .lay . Желаю успехов в повторении! .

Обсудить статью ТЕМБРОБЛОК