В научной среде широко известна шутка на эту тему "нелинейность" сравнивается с "не-слоном" - все создания, кроме "слонов", являются "не-слонами". Сходство заключается в том, что большинство систем и явлений в окружающем нас мире нелинейны, за малым исключением. Вопреки этому, в школе нас учат "линейному" мышлению, что очень плохо, с точки зрения нашей готовности к восприятию всепроникающей нелинейности Вселенной, будь то ее физические, биологические, психологические или социальные аспекты. Нелинейность концентрирует в себе одну из основных сложностей познания окружающего мира поскольку следствия, в общей своей массе, не пропорциональны причинам, две причины, при взаимодействии, не аддитивны, то есть следствия являются более сложными, чем простая суперпозиция, функциями причин. То есть, результат, получающийся в результате присутствия и воздействия двух причин, действующих одновременно, не является суммой результатов, полученных в присутствии каждой из причин в отдельности, при отсутствии другой причины.  

Определение 9. Ее in на некотором промежутке X определена функция г-ф(лг) с множеством значений Z и на множестве Z определена функция у =/(z), то функция у Лсложной функцией от х (или суперпозицией функции), а переменная z - промежуточной переменной сложной функции.  

Контроллинг можно представить как суперпозицию трех классических управленческих функций - учета, контроля и анализа (ретроспективного) . Контроллинг как интегрированная функция управления делает возможным не только подготовку решения, но и обеспечение контроля его выполнения с помощью соответствующих управленческих инструментов.  

Как известно /50/, любую временную функцию можно представить как суперпозицию (набор) простых гармоничных функций с разным периодом, амплитудой и фазой. В общем случае P(t) = f(t),  

Переходная или импульсная характеристики определяются экспериментально. При их использовании по методу суперпозиции осуществляется сначала разложение выбранной модели входного воздействия на элементарные" функции времени, а затем суммирование откликов на них. Последнюю операцию называют иногда свертыванием, а интегралы в выражениях (24). . . (29) - интегралами свертки. Из них выбирается тот, у которого проще подынтегральная функция.  

Эта теорема сводит задачу на условный экстремум к суперпозиции задач на безусловный экстремум. В самом деле, определим функцию R (g)  

Суперпозиция ((>(f(x)), где у(у) - неубывающая выпуклая функция одного переменного, /(х) - выпуклая функция , является выпуклой функцией.  

Пример 3.28. Вернемся к примеру 3.27. На рис. 3.24 показан в виде штрих-пунктирной кривой результат суперпозиции двух функций принадлежности , соответствующих тем квантификаторам, которые имеются в этом примере. С помощью уровня отсечки со значением 0,7 получены нечеткие интервалы на оси абсцисс. Теперь мы можем сказать, что диспетчер должен ожидать изменения плана  

Другой способ определения функции F, отличный от способа суперпозиции, состоит в том, что при применении какого-либо квантификатора к другому квантификатору происходит некое монотонное преобразование исходной функции принадлежности , сводящееся к растяжению и сдвигу максимума функции в ту или другую сторону.  

Пример 3.29. На рис. 3.25 показаны два результата, полученные с помощью суперпозиции и сдвига с растяжением, для случая, когда ХА и X соответствуют квантификатору часто. Разница состоит, по-видимому, в том, что суперпозиция вычленяет в функции принадлежности часто те значения, которые часто встречаются. В случае же сдвига и растяжения мы можем интерпретировать результат как появление нового квантификатора со значением часто-часто , который можно при желании аппроксимировать, например, значением очень часто.  

Покажите, что суперпозиция строго возрастающей функции и функции полезности , представляющей некоторое отношение предпочтения >, также является функцией полезности , представляющей это отношение предпочтения. Какие из нижеприведенных функций могут выступать в качестве такого преобразования  

Первое из соотношений (2) представляет собой не что иное, как запись правила, согласно которому каждой функции F(x), принадлежащей семейству монотонно неубывающих абсолютно непрерывных функций , ставится в соответствие одна и только одна непрерывная функция w(j). Это правило линейно , т.е. для него верен принцип суперпозиции  

Доказательство. Если отображение F непрерывно, функция М0 непрерывна как суперпозиция непрерывных функций . Чтобы доказать вторую часть утверждения, рассмотрим функцию  

Сложные е функции (суперпозиции)  

Метод функциональных преобразований предполагает также использование эвристического подхода. Например, использование логарифмических преобразований в качестве операторов В и С приводит к информационным критериям построения идентифицируемых моделей и использованию мощного инструмента теории информации . Пусть оператор В представляет собой суперпозицию операторов умножения на функцию,(.) и сдвига на функцию К0(), оператор С - оператор  

Здесь будут в общих чертах приведены результаты решения ряда вариационных задач (1)-(3). Они решались методом последовательной линеаризации (19-21) еще в 1962-1963 гг., когда технология метода только начинала складываться и проходила проверку. Поэтому мы остановимся лишь на некоторых деталях. Прежде всего заметим, что функции С и С2 были заданы достаточно сложными выражениями, являющимися суперпозицией вспомогательных функций, в том числе и заданных таблично. Поэтому при решении сопряженной системы ф=-fxиспользованием функций, заданных таблично. Обычно подобные таблицы содержат небольшое число значений для набора узлов в области изменения независимого аргумента, а между ними функция интерполируется линейно, так как применение более точных методов интерполяции не оправдано ввиду неточности самих табличных значений (как правило, таблицами задаются функциональные зависимости экспериментального характера). Однако для наших целей нужны дифференцируемые функции / (х, и), поэтому следует предпочесть гладкие методы восполнения таблично заданной функции (например, с помощью сплайнов).  

Пусть теперь (ДА и (д - произвольные функции, соответствующие каким-то значениям квантификаторов частоты. На рис. 3.23 показаны две одногорбые кривые, отвечающие этим функциям. Результат их суперпозиции - двугорбая кривая, показанная штриховой линией. Каков ее смысл Если, например, (ДА есть редко, а (д - часто,  

Преимущество такого способа определения F состоит в том, что при монотонных преобразованиях вид функции принадлежности меняется не кардинально. Ее унимодальность или монотонность сохраняется, и переход от нового вида функции (2.16) имеют трапециевидную форму, то и линейная суперпозиция (2.15) является трапециевидным нечетким числом (что легко доказывается при использовании сегментного правила вычислений ). И можно свести операции с функциями принадлежности к операциям с их вершинами. Если обозначить трапециевидное число (2.16) как (аь а2, аз, а4), где а соответствуют абсциссам вершин трапеции, то выполняется  

Тема: «Функция: понятие, способы задания, основные характеристики. Обратная функция. Суперпозиция функций.»

Эпиграф урока:

«Изучать что-либо и не задумываться над

выученным - абсолютно бесполезно.

Задумываться над чем-либо, не изучив

предварительно предмет раздумий-

Конфуций.

Цель и психолого-педагогические задачи урока :

1) Общеобразовательная (нормативная) цель : повторить со студентами определение и свойства функции. Ввести понятие суперпозиции функций.

2) Задачи математического развития студентов : на нестандартном учебно-математическом материале продолжить развитие ментального опыта учащихся, содержательной когнитивной структуры их математического интеллекта, в том числе, способностей к логико-дедуктивному и индуктивному, аналитическому и синтетическому обратимому мышлению, к алгебраическому и образно-графическому мышлению, к содержательному обобщению и конкретизации, к рефлексии и самостоятельности как метакогнитивной способности студентов; продолжить развитие культуры письменной и устной речи как психологических механизмов учебно-математического интеллекта.

3) Воспитательные задачи : продолжить личностное воспитание у студентов познавательного интереса к математике, ответственности, чувства долга, академической самостоятельности, коммуникативного умения сотрудничать с группой, преподавателем, согруппниками; аутогогической способности к соревновательной учебно-математической деятельности , стремления к высоким и высшим ее результатам (акмеический мотив).


Тип урока : изучение нового материала; по критерию ведущего математического содержания - урок-практикум; по критерию типа информационного взаимодействия учащихся и преподавателя – урок сотрудничества.

Оборудование урока:

1. Учебная литература:

1) Кудрявцев математического анализа: Учеб. для студентов университетов и вузов. В 3 т. Т. 3. – 2-е изд., перераб. и доп. – М.: Высш. шк., 1989. – 352 с. : ил.

2) Демидович задач и упражнений по математическому анализу. – 9-е изд. – М.: Издательство «Наука», 1977.

2. Иллюстрации.

Ход урока .

1.Объявление темы и главной образовательной цели урока; стимулирование чувства долга, ответственности, познавательного интереса студентов при подготовке к сессии .

2.Повторение материала по вопросам.

a) Дать определение функции.

Одним из основных математических понятий является понятие функции. Понятие функции связано с установлением зависимости между элементами двух множеств.

Пусть даны два непустых множества и . Соответствие f, которое каждому элементу сопоставляет один и только один элемент , называется функцией и записывается y = f(x). Говорят еще, что функция f отображает множество на множество .

https://pandia.ru/text/79/018/images/image003_18.gif" width="63" height="27">.gif" width="59" height="26"> называется множеством значений функции f и обозначается E(f).

б) Числовые функции. График функции. Способы задания функций.

Пусть задана функция .

Если элементами множеств и являются действительные числа, то функцию f называют числовой функцией . Переменная x при этом называется аргументом или независимой переменной, а y – функцией или зависимой переменной (от x). Относительно самих величин x и y говорят, что они находятся в функциональной зависимости .

Графиком функции y = f(x) называется множество всех точек плоскости Oxy, для каждой из которых x является значением аргумента, а y – соответствующим значением функции.

Чтобы задать функцию y = f(x), необходимо указать правило, позволяющее, зная x, находить соответствующее значение y.

Наиболее часто встречаются три способа задания функции: аналитический, табличный, графический.

Аналитический способ : функция задается в виде одной или нескольких формул или уравнений.

Например:

Если область определения функции y = f(x) не указана, то предполагается, что она совпадает с множеством всех значений аргумента, при которых соответствующая формула имеет смысл.

Аналитический способ задания функции является наиболее совершенным, так как к нему приложены методы математического анализа, позволяющие полностью исследовать функцию y = f(x).

Графический способ : задается график функции.

Преимуществом графического задания является его наглядность, недостатком – его неточность.

Табличный способ : функция задается таблицей ряда значений аргумента и соответствующих значений функции. Например, известные таблицы значений тригонометрических функций, логарифмические таблицы.

в) Основные характеристики функции.

1. Функция y = f(x),определенная на множестве D, называется четной , если выполняются условия и f(-x) = f(x); нечетной , если выполняются условия и f(-x) = -f(x).

График четной функции симметричен относительно оси Oy, а нечетной – относительно начала координат. Например, – четные функции; а y = sinx, https://pandia.ru/text/79/018/images/image014_3.gif" width="73" height="29"> – функции общего вида, т. е. не четные и не нечетные.


2.Пусть функция y = f(x) определена на множестве D и пусть . Если для любых значений аргументов из неравенства вытекает неравенство: , то функция называется возрастающей на множестве ; если , то функция называется неубывающей на https://pandia.ru/text/79/018/images/image021_1.gif" width="117" height="28 src=">то функция наз. убывающей на ; - невозрастающей .

Возрастающие, невозрастающие, убывающие и неубывающие функции на множестве https://pandia.ru/text/79/018/images/image023_0.gif" width="13" height="13">D значение (x+T)D и выполняется равенство f(x+T) = f(x).

Для построения графика периодической функции периода T достаточно построить его на любом отрезке длины T и периодически продолжить его во всю область определения.

Отметим основные свойства периодической функции.

1) Алгебраическая сумма периодических функций, имеющих один и тот же период T, есть периодическая функция с периодом T.

2) Если функция f(x) имеет период T, то функция f(ax) имеет период T/a.

г) Обратная функция.

Пусть задана функция y = f(x) с областью определения D и множеством значений E..gif" width="48" height="22">, то определена функция x = z(y) с областью определения E и множеством значений D. Такая функция z(y) называется обратной к функции f(x) и записывается в следующем виде: . Про функции y = f(x) и x = z(y) говорят, что они являются взаимно обратными. Чтобы найти функцию x = z(y), обратную к функции y = f(x), достаточно решить уравнение f(x) = y относительно x.

Примеры :

1. Для функции y = 2x обратной функцией является функция x = ½ y;

2. Для функции обратной функцией является функция .

Из определения обратной функции вытекает, что функция y = f(x) имеет обратную тогда и только тогда, когда f(x) задает взаимно однозначное соответствие между множествами D и E. Отсюда следует, что любая строго монотонная функция имеет обратную . При этом, если функция возрастает (убывает), то обратная функция также возрастает (убывает).

3. Изучение нового материала.

Сложная функция.

Пусть функция y = f(u) определена на множестве D, а функция u = z(x) на множестве , причем для соответствующее значение . Тогда на множестве определена функция u = f(z(x)), которая называется сложной функцией от x (или суперпозицией заданных функций, или функцией от функции ).

Переменную u = z(x) называют промежуточным аргументом сложной функции.

Например, функция y = sin2x есть суперпозиция двух функций y = sinu и u = 2x. Сложная функция может иметь несколько промежуточных аргументов.

4. Решение нескольких примеров у доски.

5. Заключение урока.

1) теоретико-прикладные итоги практического занятия; дифференцированная оценка уровня ментального опыта учащихся; уровня усвоения ими темы, компетентности, качества устной и письменной математической речи; уровня проявленного творчества; уровня самостоятельности и рефлексии; уровня инициативы, познавательного интереса к отдельным методам математического мышления; уровней сотрудничества, интеллектуальной состязательности, стремления к высоким показателям учебно-математической деятельности и др.;

2) объявление аргументированных отметок, поурочного балла.

Пусть есть 2 функции:

: A→B и g: D→F

Пусть область определения D функции g входит в область значений функции f (DB). Тогда можно определить новую функциюсуперпозицию (композицию, сложную функцию) функций f и g: z = g ((x )).

Примеры. f(x)=x 2 , g(x)=e x . f:R→R, g:R→R.

(g(x))=e 2x , g((x))=.

Определение

Пусть идве функции. Тогда их композицией называется функция, определённая равенством:

Свойства композиции

    Композиция ассоциативна:

    Если F = id X - тождественное отображение на X , то есть

.

    Если G = id Y - тождественное отображение на Y , то есть

.

Дополнительные свойства

Счетные и несчетные множества.

Два конечных множества состоят из равного числа элементов, если между этими множествами можно установить взаимно однозначное соответствие. Число элементов конечного множества – мощность множества.

Для бесконечного множества можно установить взаимно однозначное соответствие между всем множеством и его частью.

Самым простым из бесконечных множеств является множество N.

Определение. Множества А и В называются эквивалентными (АВ), если между ними можно установить взаимно однозначное соответствие.

Если эквивалентны два конечных множества, то они состоят из одного и того же числа элементов.

Если же эквивалентные между собой множества А и В произвольны, то говорят, что А и В имеют одинаковую мощность . (мощность = эквивалентность).

Для конечных множеств понятие мощности совпадает с понятием числа элементов множества.

Определение. Множество называется счетным , если можно установить взаимно однозначное соответствие между ним и множеством натуральных чисел. (Т.е. счетное множество – бесконечное, эквивалентное множеству N).

(Т.е. все элементы счетного множества можно занумеровать).

Свойства отношения равномощности.

1) АА- рефлексивность.

2) АВ, то ВА – симметричность.

3) АВ и ВС, то АС – транзитивность.

Примеры.

1) n→2n, 2,4,6,… - четные натуральные

2) n→2n-1, 1,3,5,…- нечетные натуральные.

Свойства счетных множеств .

1. Бесконечные подмножества счетного множества счетны.

Доказательство . Т.к. А – счетно, то А: х 1 ,х 2 ,… - отобразили А в N.

ВА, В: →1,→2,… - поставили каждому элементу В в соответствиенатуральное число, т.е. отобразили В в N. Следовательно В – счетно. Ч.т.д.

2. Объединение конечной (счетной) системы счетных множеств – счетно.

Примеры .

1. Множество целых чисел Z – счетно, т.к. множество Z можно представить как объединение счетных множеств А и В, где А: 0,1,2,.. и В: -1,-2,-3,…

2. Множество упорядоченных пар {(m,n): m,nZ} (т.е. (1,3)≠(3,1)).

3 (!) . Множество рациональных чисел – счетно.

Q=. Можно установить взаимно однозначное соответствие между множеством несократимых дробейQ и множеством упорядоченных пар:

Т.о. множество Q равномощно множеству {(p,q)}{(m,n)}.

Множество {(m,n)} – множество всех упорядоченных пар – счетно. Следовательно и множество {(p,q)} – счетно, а значит и Q – счетно.

Определение. Иррациональным числом называется произвольная бесконечная десятичная непериодическая дробь, т.е.  0 , 1  2 …

Множество всех десятичных дробей образуют множество вещественных (действительных) чисел.

Множество иррациональных чисел – несчетно.

Теорема 1 . Множество вещественных чисел из промежутка (0,1) – несчетное множество.

Доказательство . Допустим противное, т.е. что все числа интервала (0,1) можно занумеровать. Тогда, записывая эти числа в виде бесконечных десятичных дробей, получим последовательность:

х 1 =0,а 11 а 12 …a 1n …

x 2 =0,a 21 a 22 …a 2n …

…………………..

x n =0,a n 1 a n 2 …a nn …

……………………

Рассмотрим теперь вещественное число х=0,b 1 b 2 …b n …, где b 1 - любая цифра, отличная от а 11 , (0 и 9), b 2 - любая цифра, отличная от а 22 , (0 и 9),…, b n - любая цифра, отличная от a nn , (0 и 9).

Т.о. х(0,1), но хx i (i=1,…,n) т.к. в противном случае, b i =a ii . Пришли к противоречию. Ч.т.д.

Теорема 2. Любой промежуток вещественной оси является несчетным множеством.

Теорема 3. Множество действительных (вещественных) чисел – несчетно.

Про всякое множество, равномощное множеству вещественных чисел говорят, что оно мощности континуума (лат. continuum – непрерывное, сплошное).

Пример . Покажем, что интервал обладает мощностью континуума.

Функция у=tg x: →R отображает интервал на всю числовую прямую (график).

Пусть имеется некоторый набор K , состоящий из конечного числа булевых функций. Суперпозицией функций из этого набора называются новые функции, полученные с помощью конечного числа применения двух операций;

можно переименовать любую переменную, входящую в функцию из K ;

вместо любой переменной можно поставить функцию из набора K или уже образованную ранее суперпозицию.

Суперпозицию еще иначе называют сложной функцией.

Пример 7. 1. Если дана одна функция х |y (штрих Шеффера), то ее суперпозициями, в частности, будут следующие функции x|x , x| (x|y ), x| (y|z ) и т. д.

Замыканием набора функций из K называется множество всех суперпозиций. Класс функций K называется замкнутым , если его замыкание совпадает с ним самим.

Набор функций называется полным , если его замыкание совпадает со всеми логическими функциями. Иначе говоря, полный набор - это множество таких функций, через которые можно выразить все остальные булевы функции.

Неизбыточный полный набор функций называется базисом (“неизбыточный” означает, что если какую-то функцию удалить из набора, то этот набор перестанет быть полным).

Пример 7.2. Конъюнкция, дизъюнкция и отрицание являются полным набором (в этом убедились в разд. 5), но не являются базисом, так как это набор избыточен, поскольку с помощью правил де Моргана можно удалить конъюнкцию или дизъюнкцию. Любую функцию можно представить в виде полинома Жегалкина (разд. 6). Ясно, что функции конъюнкция, сложение по модулю 2 и константы 0 и 1 являются полным набором, но эти четыре функции также не являются базисом, поскольку 1+1=0, и поэтому константу 0 можно исключить из полного набора (для построения полиномов Жегалкина константа 0 необходима, поскольку выражение “1+1” не является полиномом Жегалкина).

Легко видеть, что одним из способов проверки полноты какого-то набора К является проверка того, что через функции из этого набора выражаются функции другого полного набора (можно проверить, что через функции из К можно выразить конъюнкцию и отрицание или дизъюнкцию и отрицание.

Существуют такие функции, что одна такая функция сама является базисом (здесь достаточно проверить только полноту, неизбыточность очевидна). Такие функции называются шефферовскими функциями. Это название связано с тем, что штрих Шеффера является базисом. Напомним, что штрих Шеффера определяется следующей таблицей истинности:

Так как очевидно , т. е. отрицание является суперпозицией штриха Шеффера, а дизъюнкция тогда , штрих Шеффера сам является базисом. Аналогично, стрелка Пирса является шефферовской функцией (студенты могут проверить это сами). Для функций 3-х или более переменных шефферовских функций очень много (конечно, выражение других булевых функций через шефферовскую функцию большого числа переменных сложно, поэтому в технике они редко используются).

Заметим, что вычислительное устройство чаще всего базируется на полном наборе функций (часто на базисах). Если в основе устройства лежат конъюнкция, дизъюнкция и отрицание, то для этих устройств важна проблема минимизации ДНФ; если в основе устройства лежат другие функции, то полезно уметь алгоритмически минимизировать выражения через эти функции.

Перейдем теперь к выяснению полноты конкретных наборов функций. Для этого перечислим 5 важнейших классов функций:

  • Т 0 - это набор всех тех логических функций, которые на нулевом наборе принимают значение 0 (Т 0 - это класс функций, сохраняющих 0);
  • Т 1 - это набор всех логических функций, которые на единичном наборе принимают значение 1 (Т 1 - это класс функций, сохраняющих единицу ) (заметим, что число функций от п переменных принадлежащих классам Т 0 и Т 1 равно 2 2n-1);
  • L - класс линейных функций т. е. функций, для которых полином Жегалкина содержит только первые степени переменных;
  • М - класс монотонных функций. Опишем класс этих функций более подробно. Пусть имеются 2 набора из п переменных: s1 = (x 1 , x 2 ,..., x n)

s 1 = (х 1 , х 2 , , х п ) и s 2 = (y 1 , y 2, , y п) . Будем говорить, что набор s 1 меньше набора s 2 (s 1 £ s 2 ), если все х i £ y i . Очевидно, что не все наборы из п переменных сравнимы между собой (например, при п = 2 наборы (0,1) и (1,0) не сравнимы между собой). Функция от п переменных называется монотонной , если на меньшем наборе она принимает меньшее или равное значение. Разумеется, эти неравенства должны проверяться только на сравнимых наборах. Понятно, что несравнимые наборы - это те, в которых есть некоторые координаты типа (0,1) в одном наборе и (1,0) в другом на соответствующих местах (в дискретной математике монотонные функции это только как бы “монотонно возрастающие функции”, “монотонно убывающие” функции здесь не рассматриваются).

Пример. В нижеследующей таблице функции f 1 , f 2 являются монотонными функциями, а функции f 3 , f 4 - нет.

Естественный порядок переменных обеспечивает тот факт, что если какой-то набор меньше другого набора, то он обязательно расположен в таблице истинности выше “большего” набора. Поэтому если в таблице истинности () вверху стоят нули , а затем единицы , то эта функция точно является монотонной . Однако возможны инверсии, т. е. единица стоит до каких-то нулей , но функция является все равно монотонной (в этом случае наборы, соответствующие “верхней” единице и “нижнему” нулю должны быть несравнимы ; можно проверить, что функция, задаваемая таблицей истинности при естественном порядке набора переменных (00010101), является монотонной);

Теорема . Классы функций Т 0 , Т 1 , L , M , S замкнуты .

Это утверждение следует непосредственно из определения самих этих классов, а также из определения замкнутости.

В теории булевых функций очень большое значение имеет следующая теорема Поста.

Теорема Поста . Для того чтобы некоторый набор функций K был полным, необходимо и достаточно, чтобы в него входили функции, не принадлежащие каждому из классов T 0 , T 1 , L , M , S .

Заметим, что необходимость этого утверждения очевидна, так как если бы все функции из набора К входили в один из перечисленных классов, то и все суперпозиции, а значит, и замыкание набора входило бы в этот класс и класс К не мог быть полным.

Достаточность этого утверждения доказывается довольно сложно, поэтому здесь не приводится.

Из этой теоремы следует довольно простой способ выяснения полноты некоторого набора функций. Для каждой из этих функций выясняется принадлежность к перечисленным выше классам. Результаты заносятся в так называемую таблицу Поста (в нашем примере эта таблица составлена для 4-х функций, причем знаком “+” отмечается принадлежность функции соответствующему классу, знак “-” означает, что функция в него не входит).

В соответствии с теоремой Поста набор функций будет полным тогда и только тогда, когда в каждом столбце таблицы Поста имеется хотя бы один минус. Таким образом, из приведенной таблицы следует, что данные 4 функции образуют полный набор, но эти функции не являются базисом. Из этих функций можно образовать 2 базиса: f 3 , f 1 и f 3 , f 2 . Полными наборами будут любые наборы содержащие, какой-либо базис.

Непосредственно из таблицы Поста следует, что число базисных функций не может быть больше 5. Нетрудно доказать, что на самом деле это число меньше или равно 4.

Определение функции, области задания и множества значений. Определения, связанные с обозначением функции. Определения сложной, числовой, действительной, монотонной и многозначной функции. Определения максимума, минимума, верхней и нижней граней для ограниченных функций.

Содержание

Функцией y = f(x) называется закон (правило, отображение), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы во множестве X , называется множеством значений функции (или областью значений ).

Область определения функции иногда называют множеством определения или множеством задания функции.

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Само отображение f называется характеристикой функции .

Характеристика f обладает тем свойством, что если два элемента и из множества определения имеют равные значения: , то .

Символ, обозначающий характеристику, может совпадать с символом элемента значения функции. То есть можно записать так: . При этом стоит помнить, что y - это элемент из множества значений функции, а - это правило, по которому для элемента x ставится в соответствие элемент y .

Сам процесс вычисления функции состоит из трех шагов. На первом шаге мы выбираем элемент x из множества X . Далее, с помощью правила , элементу x ставится в соответствие элемент множества Y . На третьем шаге этот элемент присваивается переменной y .

Частным значением функции называют значение функции при выбранном (частном) значении ее аргумента.

Графиком функции f называется множество пар .

Сложные функции

Определение
Пусть заданы функции и . Причем область определения функции f содержит множество значений функции g . Тогда каждому элементу t из области определения функции g соответствует элемент x , а этому x соответствует y . Такое соответствие называют сложной функцией : .

Сложную функцию также называют композицией или суперпозицией функций и иногда обозначают так: .

В математическом анализе принято считать, что если характеристика функции обозначена одной буквой или символом, то она задает одно и то же соответствие. Однако, в других дисциплинах, встречается и другой способ обозначений, согласно которому отображения с одной характеристикой, но разными аргументами, считаются различными. То есть отображения и считаются различными. Приведем пример из физики. Допустим мы рассматриваем зависимость импульса от координаты . И пусть мы имеем зависимость координаты от времени . Тогда зависимость импульса от времени является сложной функцией . Но ее, для краткости, обозначают так: . При таком подходе и - это различные функции. При одинаковых значениях аргументов они могут давать различные значения. В математике такое обозначение не принято. Если требуется сокращение, то следует ввести новую характеристику. Например . Тогда явно видно, что и - это разные функции.

Действительные функции

Область определения функции и множество ее значений могут быть любыми множествами.
Например, числовые последовательности - это функции, областью определения которых является множество натуральных чисел, а множеством значений - вещественные или комплексные числа.
Векторное произведение тоже функция, поскольку для двух векторов и имеется только одно значение вектора . Здесь областью определения является множество всех возможных пар векторов . Множеством значений является множество всех векторов.
Логическое выражение является функцией. Ее область определения - это множество действительных чисел (или любое множество, в котором определена операция сравнения с элементом “0”). Множество значений состоит из двух элементов - “истина” и “ложь”.

В математическом анализе большую роль играют числовые функции.

Числовая функция - это функция, значениями которой являются действительные или комплексные числа.

Действительная или вещественная функция - это функция, значениями которой являются действительные числа.

Максимум и минимум

Действительные числа имеют операцию сравнения. Поэтому множество значений действительной функции может быть ограниченным и иметь наибольшее и наименьшее значения.

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.

Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Максимумом M (минимумом m ) функции f , на некотором множестве X называют значение функции при некотором значении ее аргумента , при котором для всех ,
.

Верхней гранью или точной верхней границей действительной, ограниченной сверху функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Верхней гранью неограниченной сверху функции

Нижней гранью или точной нижней границей действительной, ограниченной снизу функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Нижней гранью неограниченной снизу функции является бесконечно удаленная точка .

Таким образом, любая действительная функция, на не пустом множестве X , имеет верхнюю и нижнюю грани. Но не всякая функция имеет максимум и минимум.

В качестве примера рассмотрим функцию , заданную на открытом интервале .
Она ограничена, на этом интервале, сверху значением 1 и снизу - значением 0 :
для всех .
Эта функция имеет верхнюю и нижнюю грани:
.
Но она не имеет максимума и минимума.

Если мы рассмотрим туже функцию на отрезке , то она на этом множестве ограничена сверху и снизу, имеет верхнюю и нижнюю грани и имеет максимум и минимум:
для всех ;
;
.

Монотонные функции

Определения возрастающей и убывающей функций
Пусть функция определена на некотором множестве действительных чисел X . Функция называется строго возрастающей (строго убывающей)
.
Функция называется неубывающей (невозрастающей) , если для всех таких что выполняется неравенство:
.

Определение монотонной функции
Функция называется монотонной , если она неубывающая или невозрастающая.

Многозначные функции

Пример многозначной функции. Различными цветами обозначены ее ветви. Каждая ветвь является функцией.

Как следует из определения функции, каждому элементу x из области определения, ставится в соответствие только один элемент из множества значений. Но существуют такие отображения, в которых элемент x имеет несколько или бесконечное число образов.

В качестве примера рассмотрим функцию арксинус : . Она является обратной к функции синус и определяется из уравнения:
(1) .
При заданном значении независимой переменной x , принадлежащему интервалу , этому уравнению удовлетворяет бесконечно много значений y (см. рисунок).

Наложим на решения уравнения (1) ограничение. Пусть
(2) .
При таком условии, заданному значению , соответствует только одно решение уравнения (1). То есть соответствие, определяемое уравнением (1) при условии (2) является функцией.

Вместо условия (2) можно наложить любое другое условие вида:
(2.n) ,
где n - целое. В результате, для каждого значения n , мы получим свою функцию, отличную от других. Множество подобных функций является многозначной функцией . А функция, определяемая из (1) при условии (2.n) является ветвью многозначной функции .

Это совокупность функций, определенных на некотором множестве.

Ветвь многозначной функции - это одна из функций, входящих в многозначную функцию.

Однозначная функция - это функция.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.