Оператор Лапласа

Оператор Лапласа определяется выражением

и в декартовой системе координат описывается формулой

Найдем выражение для оператора Лапласа в криволинейной ортогональной системе координат. Для этого запишем градиент и дивергенцию в криволинейной системе координат

Подставляя эти выражения в оператор Лапласа, получим

Пример 1. Найти выражение для оператора Лапласа в цилиндрической системе координат.

Замечание 1. Оператор Лапласа в полярной системе координат определяется формулой

Пример 2. Найти выражение для оператора Лапласа в сферической системе координат.

Решение. Подставляя значения коэффициентов Ламе, получим

Уравнение Лапласа

Уравнением Лапласа называют уравнение вида.

Это уравнение называют уравнением эллиптического типа. Оно часто встречается в задачах, связанных с определением потенциала различных стационарных полей. В частности, задача определения поля температур, электрического потенциала, упругих напряжений и деформаций связана с решением уравнения Лапласа. Отметим, что в математической физике изучают также уравнения гиперболического и параболического типа.

Существует много различных методов решения уравнений эллиптического типа. Среди них можно выделить метод разделения переменных, метод функции источника, теорию потенциала, метод аналитических функций и много других. Рассмотрим несколько простейших задач, не связанных с использованием специальных методов.

Цилиндрическая симметрия. Найдем решение уравнения Лапласа для функции, обладающей цилиндрической симметрией, т.е. не зависящей от полярного угла и переменной z. В этом случае уравнение Лапласа, записанное в цилиндрической системе координат, имеет вид

Частные производные здесь заменены полными. Из этого уравнения следует

где и - произвольные постоянные, которые можно найти из граничных условий.

Сферическая симметрия. Найдем решение уравнения Лапласа для функции, обладающей сферической симметрией, т.е. не зависящей от углов и. В этом случае уравнение Лапласа, записанное в сферической системе координат, имеет вид

Нетрудно найти решение этого уравнения

Решение уравнения Пуассона рассмотрим на конкретных примерах.

Пример 1. Найти решение уравнения Пуассона внутри круга радиуса, если

Решение. Искомая функция обладает цилиндрической симметрией, поэтому запишем уравнение Пуассона в цилиндрической системе координат в виде

Решим это уравнение

градиент криволинейный ламе дифференциальный

Постоянные и найдем из граничного условия и условия ограниченности функции. Учитывая, что, получим. Из условия получим

Следовательно, имеем окончательный ответ

Ты - не раб!
Закрытый образовательный курс для детей элиты: "Истинное обустройство мира".
http://noslave.org

Материал из Википедии - свободной энциклопедии

Оператор Лапласа эквивалентен последовательному взятию операций градиента и дивергенции : texvc не найден; См. math/README - справку по настройке.): \Delta=\operatorname{div}\,\operatorname{grad} , таким образом, значение оператора Лапласа в точке может быть истолковано как плотность источников (стоков) потенциального векторного поля Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ \operatorname{grad}F в этой точке. В декартовой системе координат оператор Лапласа часто обозначается следующим образом Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta=\nabla\cdot\nabla=\nabla^2 , то есть в виде скалярного произведения оператора набла на себя. Оператор Лапласа симметричен .

Другое определение оператора Лапласа

Оператор Лапласа является естественным обобщением на функции нескольких переменных обычной второй производной функции одной переменной. В самом деле, если функция Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ f (x) имеет в окрестности точки Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ x_0 непрерывную вторую производную Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ f""(x) , то, как это следует из формулы Тейлора

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ f(x_0+r)=f(x_0)+rf"(x_0)+\frac{r^2}{2}f""(x_0)+o(r^2), при Невозможно разобрать выражение (Выполняемый файл texvc , Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ f(x_0-r)=f(x_0)-rf"(x_0)+\frac{r^2}{2}f""(x_0)+o(r^2), при Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): r\to 0,

вторая производная есть предел

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ f""(x_0)=\lim\limits_{r \to 0} \frac{2}{r^2} \left\{ \frac{f(x_0+r)+f(x_0-r)}{2}-f(x_0) \right\}.

Если, переходя к функции Невозможно разобрать выражение (Выполняемый файл texvc от Невозможно разобрать выражение (Выполняемый файл texvc переменных, поступить таким же образом, то есть для заданной точки Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_0(x_1^0,x_2^0, ... ,x_k^0) рассматривать её Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ k -мерную шаровую окрестность Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ Q_r радиуса Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ r и разность между средним арифметическим

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ \frac{1}{\sigma(S_r)}\int\limits_{S_r}Fd\sigma

функции Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ F на границе Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ S_r такой окрестности с площадью границы Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ \sigma(S_r) и значением Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ F(M_0) в центре этой окрестности Невозможно разобрать выражение (Выполняемый файл texvc , то в случае непрерывности вторых частных производных функции Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ F в окрестности точки Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ M_0 значение лапласиана Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ \Delta F в этой точке есть предел

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ \Delta F(M_0)=\lim\limits_{r \to 0} \frac{2k}{r^2} \left\{\frac{1}{\sigma(S_r)}\int\limits_{S_r}F(M)d\sigma -F(M_0) \right\}.

Одновременно с предыдущим представлением для оператора Лапласа функции Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ F , имеющей непрерывные вторые производные, справедлива формула

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ \Delta F(M_0)=\lim\limits_{r \to 0} \frac{2(k+2)}{r^2} \left\{\frac{1}{\omega(Q_r)}\int\limits_{Q_r}F(M)d\omega -F(M_0) \right\}, где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ \omega(Q_r) - объём окрестности Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ Q_r.

Эта формула выражает непосредственную связь лапласиана функции с её объёмным средним в окрестности данной точки.

Доказательство этих формул можно найти, например, в .

Вышеизложенные пределы, во всех случаях, когда они существуют, могут служить определением оператора Лапласа функции Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ F. Такое определение предпочтительнее обычного определения лапласиана, предполагающего существование вторых производных рассматриваемых функций, и совпадает с обычным определением в случае непрерывности этих производных.

Выражения для оператора Лапласа в различных криволинейных системах координат

В произвольных ортогональных криволинейных координатах в трёхмерном пространстве Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): q_1,\ q_2,\ q_3 :

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta f (q_1,\ q_2,\ q_3) = \operatorname{div}\,\operatorname{grad}\,f(q_1,\ q_2,\ q_3) = Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): =\frac{1}{H_1H_2H_3}\left[ \frac{\partial}{\partial q_1}\left(\frac{H_2H_3}{H_1}\frac{\partial f}{\partial q_1} \right) + \frac{\partial}{\partial q_2}\left(\frac{H_1H_3}{H_2}\frac{\partial f}{\partial q_2} \right) + \frac{\partial}{\partial q_3}\left(\frac{H_1H_2}{H_3}\frac{\partial f}{\partial q_3} \right)\right], где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): H_i\ - коэффициенты Ламе .

Цилиндрические координаты

В цилиндрических координатах вне прямой Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ r=0 :

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta f = {1 \over r} {\partial \over \partial r} \left(r {\partial f \over \partial r} \right) + {\partial^2f \over \partial z^2} + {1 \over r^2} {\partial^2 f \over \partial \varphi^2}

Сферические координаты

В сферических координатах вне начала отсчёта (в трёхмерном пространстве):

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta f = {1 \over r^2} {\partial \over \partial r} \left(r^2 {\partial f \over \partial r} \right) + {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left(\sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2\sin^2 \theta} {\partial^2 f \over \partial \varphi^2} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta f = {1 \over r} {\partial^2 \over \partial r^2} \left(rf \right) + {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left(\sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \varphi^2}.

В случае если Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ f=f(r) в n -мерном пространстве:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta f = {d^2 f\over dr^2} + {n-1 \over r } {df\over dr}.

Параболические координаты

В параболических координатах (в трёхмерном пространстве) вне начала отсчёта:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta f= \frac{1}{\sigma^{2} + \tau^{2}} \left[ \frac{1}{\sigma} \frac{\partial }{\partial \sigma} \left(\sigma \frac{\partial f}{\partial \sigma} \right) + \frac{1}{\tau} \frac{\partial }{\partial \tau} \left(\tau \frac{\partial f}{\partial \tau} \right)\right] + \frac{1}{\sigma^2\tau^2}\frac{\partial^2 f}{\partial \varphi^2}

Цилиндрические параболические координаты

В координатах параболического цилиндра вне начала отсчёта:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta F(u,v,z) = \frac{1}{c^2(u^2+v^2)} \left[ \frac{\partial^2 F }{\partial u^2}+ \frac{\partial^2 F }{\partial v^2}\right] + \frac{\partial^2 F }{\partial z^2}.

Общие криволинейные координаты и римановы пространства

Пусть на гладком многообразии Невозможно разобрать выражение (Выполняемый файл texvc задана локальная система координат и Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): g_{ij} - риманов метрический тензор на Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): X , то есть метрика имеет вид

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): ds^2 =\sum^n_{i,j=1}g_{ij} dx^idx^j .

Обозначим через Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): g^{ij} элементы матрицы Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): (g_{ij})^{-1} и

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): g = \operatorname{det} g_{ij} = (\operatorname{det} g^{ij})^{-1} .

Дивергенция векторного поля Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): F , заданного координатами Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): F^i (и представляющего дифференциальный оператор первого порядка Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \sum_i F^i\frac{\partial}{\partial x^i} ) на многообразии X вычисляется по формуле

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \operatorname{div} F = \frac{1}{\sqrt{g}}\sum^n_{i=1}\frac{\partial}{\partial x^i}(\sqrt{g}F^i) ,

а компоненты градиента функции f - по формуле

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): (\nabla f)^j =\sum^n_{i=1}g^{ij} \frac{\partial f}{\partial x^i}.

Оператор Лапласа - Бельтрами на Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): X :

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta f = \operatorname{div} (\nabla f)= \frac{1}{\sqrt{g}}\sum^n_{i=1}\frac{\partial}{\partial x^i}\Big(\sqrt{g} \sum^n_{k=1}g^{ik} \frac{\partial f}{\partial x^k}\Big).

Значение Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta f является скаляром, то есть не изменяется при преобразовании координат.

Применение

С помощью данного оператора удобно записывать уравнения Лапласа , Пуассона и волновое уравнение . В физике оператор Лапласа применим в электростатике и электродинамике, квантовой механике , во многих уравнениях физики сплошных сред , а также при изучении равновесия мембран, плёнок или поверхностей раздела фаз с поверхностным натяжением (см. Лапласово давление), в стационарных задачах диффузии и теплопроводности, которые сводятся, в непрерывном пределе, к обычным уравнениям Лапласа или Пуассона или к некоторым их обобщениям.

Вариации и обобщения

  • Оператор Д’Аламбера - обобщение оператора Лапласа для гиперболических уравнений . Включает в себя вторую производную по времени.
  • Векторный оператор Лапласа - обобщение оператора Лапласа на случай векторного аргумента.

См. также

Напишите отзыв о статье "Оператор Лапласа"

Литература

Ссылки

Любая часть системы управления, будь то регулятор, объект или датчик, имеет вход и выход. С помощью входов и выходов они взаимодействуют с другими элементами системы и с внешней средой. При воздействии входного сигнала на элемент системы, в этом элементе происходят какие-то внутренние изменения состояния, которые приводят к изменению выходного сигнала. То есть элемент системы представляет собой некоторую функцию зависимости y от x. Это можно изобразить на рисунке 1.



Рисунок 1 – элемент системы управления с входом и выходом


Определение функции F(x) и есть, по сути, основная задача, решаемая в рамках теории автоматического управления. Знание F(x) объекта поможет составить правильный алгоритм управления им, F(x) датчика определит характер обратной связи, а синтез F(x) сделает систему по-настоящему работоспособной. Саму F также иногда называют оператором, поскольку она оперирует входным сигналом.


Базовыми операциями в ТАУ являются интегрирование и дифференцирование. Допустим, сигнал нарастает в течение некоторого времени, что зачастую очень характерно для сигналов в системах управления, тогда для описания этого процесса его следует «собрать» интегралом во всем временном промежутке:



Дифференцирование также чрезвычайно полезно в теории автоматического управления. Оператор дифференцирования в противовес оператору интегрирования берет производную от входного сигнала, то есть:



Здесь зарождается очень важное понятие в ТАУ – оператор Лапласа p, который призван заменить запись d/dt, иначе говоря



Также в некоторых источниках этот оператор представляется произведением мнимой единицы на угловую частоту, то есть p=jω. Но мы пока не будем трогать частотный диапазон, ибо это обширная тема и просто запомним два простейших правила:



Как же выглядит интегрирование и дифференцирование сигнала? Интегрирование сигнала скачкообразной формы показано на рисунке 2а. Здесь все просто, сигнал будет инкрементироваться на каждом шаге интегрирования, пока не достигнет за время t1 изначально заданного значения. А что если продифференцировать такой сигнал? Ни в коем случае! Это угроза безопасности Вселенной, такой сигнал пробьет небесный свод и устремится в бесконечность к звездам (рисунок 2б)! Короче говоря, математика гласит, что производная мгновенно измененного сигнала равна бесконечности, а поскольку бесконечность является идеальной и недостижимой величиной, то в реальном мире такая операция не имеет смысла. Иначе говорят, что такая операция физически не реализуема. В общем, p в чистом виде не применяется, а используется только в составе более сложных выражений, где эта p будет каким-то образом компенсирована.



Рисунок 2 – интегрирование и дифференцирование сигнала


Теперь, когда мы знаем про соотношение выходного сигнала к входному и про оператор Лапласа, мы можем перейти к такому понятию как передаточная функция. По сути, передаточная функция, записываемая как W(p), представляет собой отношение выход/вход. Система, записанная через передаточные функции, более наглядна, и в отношении нее можно применять более-менее простые методы анализа и синтеза. Но о них позже, а сейчас рассмотрим на несложном примере, как же получаются такие функции.


Предположим у нас имеется звено, процессы происходящие в котором описываются следующим уравнением:



Слева выходная величина (и ее производная), справа входная (в сложных выражениях там тоже могут быть производные). T – какая-то постоянная времени, K – какой-то коэффициент. Теперь производим замену на оператор Лапласа:



Как было выше отмечено, передаточная функция равна отношению выход/вход:



Вот так мы получили передаточную функцию инерционного звена первого порядка. В ТАУ имеется несколько типовых звеньев (включая это), из которых можно составить любую систему, любое звено какой угодно сложности. Сейчас только отметим, что передаточные функции в зависимости от порядков числителя и знаменателя могут быть правильными и неправильными. Вышеприведенная функция является правильной, также говорят строго правильной, потому что порядок знаменателя больше порядка числителя. И это хорошо, она реализуема. Ниже приведена еще пара функций.



Функция типа 1 также правильная, но не строго. Степень числителя равна степени знаменателя, но ничего страшного, она тоже реализуема. А вот функция вроде 2 не реализуема в силу наличия квадрата в числителе и отсутствия квадрата или более высокой степени в знаменателе, то есть в данном случае будет какая-то некомпенсированная производная. Таким образом, за порядком в передаточных функциях надо строго следить!

лапласиан,- дифференциальный оператор определяемый формулой

(здесь - координаты в ), а также некоторые его обобщения. Л. о. (1) является простейшим эллиптич. дифференциальным оператором 2-го порядка. Л. о. играет важную роль в математич. анализе, математич. физике и геометрии (см., напр., Лапласа уравнение, Лапласа - Бельтрами уравнение, Гармоническая функция, Гармоническая форма ).

Пусть Месть n-мерное риманово пространство с метрикой

пусть - матрица, обратная к матрице Тогда Л. о. (или оператор Лапласа - Бельтрами) римановой метрики (2) на Мимеет вид

где - локальные координаты на М. Оператор (1) отличается знаком от Л. о. стандартной евклидовой метрики

Обобщением оператора (3) является Л. о. на дифференциальных формах. Именно, в пространстве всех внешних дифференциальных форм на МЛ. о. имеет вид

где d - оператор внешнего дифференцирования формы, d* - формально сопряженный к dоператор, определяемый с помощью следующего произведения на гладких финитных формах:

где * - оператор Ходжа, порожденный метрикой (2) и переводящий р-формы в ( п-р )-формы. В формуле (5) формы a и b считаются действительными, на комплексных формах нужно использовать эрмитово продолжение скалярного произведения (5). Сужение оператора (4) на О-формы (т. е. функции) задается формулой (3). На р-формах при произвольном целом Л. о. в локальных координатах записывается в виде


Здесь - ковариантные производные по

Тензор кривизны, - тензор Риччи. Пусть дан произвольный эллиптич. комплекс

где Е р - действительные или комплексные расслоения на многообразии М, Г ( Е р ) - пространства их гладких сечений. Введя в каждом расслоении Е р эрмитову метрику, а также задав произвольным образом элемент объема на М, можно определить эрмитово скалярное произведение в пространствах гладких финитных сечений расслоений Е р. Тогда определены операторы d*, формально сопряженные к операторам d. По формуле (3) строится Л. о. на каждом пространстве Г( Е р ). Если в качестве комплекса (6) взять комплекс де Рама, то при естественном выборе метрики в р-формах и элемента объема, порожденных метрикой (2), получается в качестве Л. о. комплекса де Рама описанный выше Л. о. на формах.

На комплексном многообразии Мнаряду с комплексом де Рама имеются эллиптич. комплексы


где - пространство гладких форм типа ( р, q ).на М. Вводя эрмитову структуру в касательном расслоении на М, можно построить Л. о. (4) комплекса де Рама и Л. о. комплексов (7), (8):

Каждый из этих операторов переводит в себя пространство Если М - кэлерово многообразие, а эрмитова структура на Миндуцирована кэлеровой метрикой, то

Важным фактом, определяющим роль Л. о. эллиптич. комплекса, является существование в случае компактного многообразия Мортогонального разложения Ходжа:

В этом разложении где - Л. о. комплекса (6), так что - пространство "гармонических" сечений расслоения Е р (в случае комплекса де Рама - это пространство всех гармонических форм степени р). Прямая сумма первых двух слагаемых в правой части формулы (9) равна а прямая сумма двух последних слагаемых совпадает с В частности, разложение (9) задает изоморфизм пространства когомологий комплекса (6) в члене и пространства гармонич. сечений

Лит. : Рам Ж. д е, Дифференцируемые многообразия, пер. с франц., М., 1956; Чжэнь Шэн-шэнь, Комплексные многообразия, пер. с англ., М., 1961; Уэллс Р., Дифференциальное исчисление на комплексных многообразиях, пер. с англ., М., 1976. М. А. Шубин.

  • - интеграл движения точки постоянной массы mв поле потенциала Ньютона - Кулона L= - момент импульса - определяет плоскость орбиты, а совместно с интегралом энергии - ее конфигурацию...

    Математическая энциклопедия

  • - 1) Интеграл вида осуществляющий интегральное Лапласа преобразование функции f.действительного переменного t, в функцию F.комплексного переменного р. Был рассмотрен П. Лапласом в кон. 18- нач. 19 вв....

    Математическая энциклопедия

  • - асимптотических оценок - метод вычисления асимптотики при l>...

    Математическая энциклопедия

  • - последовательность конгруэнции в трехмерном проективном пространстве, в к-рой каждые две соседние конгруэнции образованы касательными к двум семействам линий сопряженной сети одной поверхности...

    Математическая энциклопедия

  • - трансформация Лапласа, - в широком смысле - интеграл Лапласа вида где интегрирование производится по нек-рому контуру Lв плоскости комплексного переменного z, ставящий в соответствие функции f...

    Математическая энциклопедия

  • - установленная П. Лапласом зависимость капиллярного давления Рq от ср. кривизны поверхности е раздела граничащих фаз и поверхностного натяжения q: Рq = еq....
  • - линейный дифференц. оператор, к-рый ф-ции ф ставит в соответствие ф-цию Встречается во мн. задачах матем. физики. Ур-ние дельта ф = 0 наз. Лапласа уравнением...

    Естествознание. Энциклопедический словарь

  • - один из осн. законов капиллярных явлений. Согласно Л. з., разность р0 гидростатич...
  • - линейный дифференц...

    Большой энциклопедический политехнический словарь

  • - Приморской области, Южно-Уссурийского края, на побережье Сев.-Японского моря, между мысами Авсеенко и Дурынина, севернее бухты Шхадгоу...

    Энциклопедический словарь Брокгауза и Евфрона

  • - геодезический азимут А направления на наблюдаемую точку, полученный по его астрономическому азимуту α, исправленному с учётом влияния отклонения отвеса в пункте наблюдения...
  • - космогоническая гипотеза об образовании Солнечной системы - Солнца, планет и их спутников из вращающейся и сжимающейся газовой туманности, высказанная П. Лапласом в 1796 в популярной книге «Изложение...

    Большая Советская энциклопедия

  • - зависимость перепада гидростатического давления Δp на поверхности раздела двух фаз от межфазного поверхностного натяжения σ и средней кривизны поверхности ε в рассматриваемой точке: Δр=р1- р2= εσ, где p1 -...

    Большая Советская энциклопедия

  • - лапласиан, дельта-оператор, Δ-оператор, линейный дифференциальный Оператор, который функции φ от n переменных x1, x2,.....

    Большая Советская энциклопедия

  • - установленная П. Лапласом зависимость????? - капиллярного давления?? от средней кривизны E поверхности раздела граничащих фаз и поверхностного натяжения?...
  • - ЛАПЛАСА оператор - линейный дифференциальный оператор, который функции? ставит в соответствие функциюВстречается во многих задачах математической физики. Уравнение???0 называется Лапласа уравнением...

    Большой энциклопедический словарь

"ЛАПЛАСА ОПЕРАТОР" в книгах

Отставка Лапласа

Из книги Лаплас автора

НАСЛЕДИЕ ЛАПЛАСА

Из книги Лаплас автора Воронцов-Вельяминов Борис Николаевич

Сахар Лапласа

Из книги Истории давние и недавние автора Арнольд Владимир Игоревич

Сахар Лапласа История Ф. Араго: в юности попал в плен к пиратам, потом выкуплен (каким-то англичанином в Египте?), вернувшись, стал активнейшим учёным, работал с Ампером и в оптике. Его выдвинули в Академию наук. Кандидат (до сих пор) должен посетить всех голосующих и

Принцип Лапласа

Из книги Как далеко до завтрашнего дня автора Моисеев Никита Николаевич

Принцип Лапласа В конечном счете, я не стал верующим, но и не превратился в атеиста. Мне казалось, что любые категоричные утверждения в этой сфере, лежащей на границе разума и эмоций – неуместны. Недоказуемо всё. Никакая логика не поможет в решении этого вечного вопроса.

Демон Лапласа

Из книги Больше, чем вы знаете. Необычный взгляд на мир финансов автора Мобуссин Майкл

Демон Лапласа 200 лет назад в науке господствовал детерминизм. Воодушевленные открытиями Ньютона, ученые рассматривали вселенную как часовой механизм. Французский математик Пьер Симон Лаплас хорошо выразил суть детерминизма в своем знаменитом труде «Опыт философии

43. Демон, Лапласа

Из книги Философ на краю Вселенной. НФ–философия, или Голливуд идет на помощь: философские проблемы в научно–фантастических фильмах автора Роулендс Марк

43. Демон, Лапласа Гипотетическое сверхсущество, обладающее исчерпывающими знаниями о состоянии Вселенной и способное на основе этого точно предсказывать будущие изменения. Вспомните хотя бы пролов из «Особого мнения»: если бы они могли видеть не только грядущие

Лапласа азимут

БСЭ

Лапласа гипотеза

Из книги Большая Советская Энциклопедия (ЛА) автора БСЭ автора Мейерс Скотт

Правило 52: Если вы написали оператор new с размещением, напишите и соответствующий оператор delete Операторы new и delete с размещением встречаются в C++ не слишком часто, поэтому в том, что вы с ними не знакомы, нет ничего страшного. Вспомните (правила 16 и 17), что когда вы пишете такое

1. Оператор Select – базовый оператор языка структурированных запросов

Из книги Базы данных: конспект лекций автора Автор неизвестен

1. Оператор Select – базовый оператор языка структурированных запросов Центральное место в языке структурированных запросов SQL занимает оператор Select, с помощью которого реализуется самая востребованная операция при работе с базами данных – запросы.Оператор Select

15.8.2. Оператор размещения new() и оператор delete()

Из книги C++ для начинающих автора Липпман Стенли

15.8.2. Оператор размещения new() и оператор delete() Оператор-член new() может быть перегружен при условии, что все объявления имеют разные списки параметров. Первый параметр должен иметь тип size_t:class Screen {public:void *operator new(size_t);void *operator new(size_t, Screen *);// ...};Остальные параметры

Рассмотрели три основные операции векторного анализа: вычисление gradtx для скалярного поля а и rot а для векторного поля а = а(ж, у, г). Эти операции могут быть записаны в более простом виде с помощью символического оператора V («набла»): Оператор V (оператор Гамильтона) обладает как дифференциальными, так и вектор- ными свойствами. Формальное умножение, например, умножение ^ на функцию и(х, у), будем понимать как частное дифференцирование: В рамках векторной алгебры формальные операции над оператором V будем проводить так, как если бы он был вектором. Используя этот формализм, получим следующие основные формулы: 1. Если - скалярная дифференцируемая функция, то по правилу умножения вектора на скаляр получим где P, Q, R - дифференцируемые функции, то по формуле для нахождения скалярного произведения получим Оператор Гамильтона Дифференциальные операции второго порядка Оператор Лапласа Понятие о криволинейных координатах Сферические координаты 3. Вычисляя векторное произведение , получим Для постоянной функции и = с получим а для постоянного вектора с будем иметь Из распределительного свойства для скалярного и векторного произведений получаем Замечание 1. Формулы (5) и (6) можно трактовать тамке как проявление дифференциальных свойств оператора «набла» (V - линейный дифференциальный оператор). Условились считал., что оператор V действует на все величины, написанные за ним. В этом смысле, например, - скалярный дифференциальный оператор. Применяя оператор V к произведению каких-либо величин, надо иметь в виду обычное правило дифференцирования произведения. Пример 1. Доказать, что По формуле (2) с учетом замечания 1 получаем или Чтобы отметить тот факт, что «набл а» не действует на какую-либо величину, входящую в состав сложной формулы, эту величину отмечают индексом с («const»), который в окончательном результате опускается. Пример 2. Пусть u(xty,z) - скалярная дифференцируемая функция, а(х,у,г) - векторная дифференцируемая функция. Доказать, что 4 Перепишем левую часть (8) в символическом виде Учитывая дифференциальный характер оператора V, получаем. Так как ие - постоянный скаляр, то его можно вынести за знак скалярного произведения, так что а (на последнем шаге мы опустили индекс е). В выражении (V, иас) оператор V действует только на скалярную функцию и, поэтому В итоге получаем Замечай ие 2. Используя формализм действа с оператором V как с вектором, надо помнить, что V не является обычным вектором - он не им«ет ни длины, ни направления, так что. например, вектор }